Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 (a)}$	Alcohol; (2)-methylpropan-2-ol (1)	Formula of alcohol	$\mathbf{2}$
Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Just acid $/ \mathrm{H}^{+}$for catalyst		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(i)	Tap funnel / separating funnel	Buchner funnel Filter funnel	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(ii)	To neutralize / remove/ react with (excess) acid	To purify it	$\mathbf{1}$
	Allow To neutralize / remove / react with (excess) H^{+} To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst Ignore additional comments on quenching or reaction stopping	To remove excess acid and alcohol rust "to quench acid catalyst/stop reaction"	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (b)(iii)	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	$\mathbf{1}$
Allow silica gel Allow formulae of drying agents			

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1)	Conical flask Flat bottomed flask	$\mathbf{3}$
Thermometer in correct position with bulb opposite condenser opening (1)	Ignore fractionating column if included between flask and condenser		

Question Number	Acceptable Answers	Reject	Mark
* 1 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made. Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio $3: 9$ or 1:3 OR Peak due to $\left(\mathrm{CH}_{3}\right)_{3}$ is $3 x$ higher than peak due to CH_{3} (1) Third mark Environments are $\mathrm{CH}_{3} \mathrm{COO}$ and $\left(\mathrm{CH}_{3}\right)_{3}$ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule OR $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ (peak at 2.1) and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ (peak at 1.3) (1) Fourth mark Singlets/ no splitting as no H on adjacent C OR Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)	Just "the peaks are due to $\left(\mathrm{CH}_{3}\right)_{3}$ and CH_{3}	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$		$\mathbf{1}$
(d)(i)	Or correctly displayed		
	Allow $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ (d)(ii)	The H on the $\mathrm{CH}_{3} \mathrm{COO}$	$\mathbf{1}$	
	Accept circle round all of first methyl group Accept a hydrogen in this environment if rest of molecule is incorrect	Circle round C of first methyl group	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 1 \\ & (e)(i) \end{aligned}$	Any acid with $6 \mathrm{C}(5 \mathrm{C}+\mathrm{COOH})$ which is chiral, so will have a branched chain $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$ OR $\begin{equation*} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH} \tag{1} \end{equation*}$ Infrared indicates ($\mathrm{O}-\mathrm{H}$ present in a) carboxylic acid (1) High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown Allow acids can form dimers. Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1) (Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark This may be shown by a chiral carbon being labelled in the formula (1) Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4dinitrophenylhydrazine/ (1)	Infrared indicates O- Infrared indicates alkyl group Just "does not contain $\mathrm{C}=\mathrm{O}$ (group)"	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1}$ $\mathbf{(e) (i i)}$	No because the isomers (which are carboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1)	$\mathbf{1}$	
OR Yes because could be distinguished by infrared fingerprint (1)	Yes because spectrum is unique		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 (a) (i)}$	(Acid) hydrolysis	substitution	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (a) (i i) ~}$	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-}$ Potassium dichromate((VI)) / sodium dichromate((VI)) / dichromate((VI)) ions ALLOW manganate((VII)) ions, etc	Just "dichromate" chromates	$\mathbf{1}$
Correct			
formula with			
wrong name			
and vice versa			
Incorrect			
oxidation			
number			

\hline\end{array}\right.\)

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iii)	Lithium tetrahydridoaluminate/ lithium aluminium hydride/ LiAlH_{4} (in dry ether)	J ust [H^{-}]	1

Question Number	Acceptable Answers	Reject	Mark
2 (a)(iv)	Methyl butanoate (1) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow+$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOCH}_{3}+\mathrm{H}_{2} \mathrm{O}$ (1) ALLOW \rightleftharpoons IGNORE state symbol even if wrong	Methyl butoate	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
2 (a)(v)	 Don't penalise undisplayed methyl groups as here. COCl must be displayed as above.	$\begin{aligned} & \mathrm{C}_{3} \mathrm{H}_{7} \text { for } \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{2 ~ (b) (i) ~}$	Nitrogen inert / unreactive / less reactive (than oxygen) OR Oxygen might react with chemicals going through column / sample might oxidise	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
2 (b)(ii)	Solubility (in liquid / stationary phase) OR Interaction with liquid / stationary phase OR Interaction between mobile and stationary phase OR Attraction for liquid / stationary phase OR Strength of (named) intermolecular forces OR Adsorption on liquid / stationary phase OR Absorption on liquid / stationary phase	Size of molecule / molar mass Polarity, unless with explanation Boiling point / volatility Viscosity Attraction for carrier gas Just a named intermolecular force J ust 'retention time' Density	1

Question Number	Acceptable Answers	Reject	Mark
2 (c)(i)	 OR Ester link including $\mathrm{C}=0$ (1) Rest of polymer with oxygens at end correct (1) All H atoms must be shown. PENALISE lack of displayed $\mathrm{C}=0$ once only ACCEPT Without brackets around formula but bonds at end should be shown More than two correct units IGNORE n after brackets		2

Question Number	Acceptable Answers	Reject	Mark
2 (c)(ii)	Hydrolysis		$\mathbf{1}$
	OR Splits / breaks ester link OR polymer breaks down to monomers OR equation showing hydrolysis	Just 'breaks polymer down'	

Question Number	Acceptable Answers	Reject	Mark
3(a)(i)	Sodium/potassium dichromate((VI))/potassium manganate ((VII))/ $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{KMnO}_{4}$ IGNORE references to acid	$\begin{aligned} & \text { Just } \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} \\ & / \mathrm{MnO}_{4}^{-} \end{aligned}$	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (a) (i i)}$	(Heat under) reflux (1)		$\mathbf{2}$
	Use excess/sufficient oxidizing agent/reagent named in (a)(i), even if incorrect IGNORE references to (excess) acid Stand alone marks	(1)	

Question Number	Acceptable Answers	Reject	Mark
3(a)(iii)	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN} / \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN}$ ACCEPT displayed or skeletal formulae $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{H}^{+}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4}^{+}$ OR $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4} \mathrm{Cl} \tag{2} \end{equation*}$ If equation is incorrect then presence of H^{+}or acid in equation/or above arrow and water on LHS scores (1) Mark cq on formula of nitrile ALLOW one mark for the following equation without H^{+}. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3}$ ALLOW two marks for either of the following with H^{+}above the arrow $\begin{aligned} & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3} \\ & \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{4}^{+} \end{aligned}$ ALLOW answers for alkaline hydrolysis followed by acidification $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}+\mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{NH}_{3} \tag{1} \end{equation*}$ Then $\begin{equation*} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \tag{1} \end{equation*}$ If propanamide, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ is given initially then ALLOW the two equation marks for the hydrolysis $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{H}^{+}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+$ $\mathrm{NH}_{4}{ }^{+}$ If no acid is used then only one mark $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH}+\mathrm{NH}_{3}$	Hydroxynitriles	3

Question Number	Acceptable Answers	Reject	Mark
3(b)	Reagent - Propanoyl chloride/ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ Any two from: $\mathrm{C}-\mathrm{Cl}$ bond is weaker (than $\mathrm{C}-0$) $\mathrm{Cl}^{-} /$chloride (ion) is a better leaving group Carbonyl carbon is more positive/more $\delta+/$ more attractive to nucleophiles OR Reagent - Propanoic anhydride/($\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}$ $\mathrm{CH}_{3} \mathrm{COO}^{-} /$propanoate (ion) is a better leaving group Carbonyl carbon is more positive/more $\delta+/$ more attractive to nucleophiles IGNORE references to eversible/equilibrium/ catalysts IGNORE bond polarity	Propyl chloride Just Cl is more electronegative	3

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{3 (c) (\mathbf { i })}$	Radio waves/radio frequency	Just radio	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark	
3(c)(ii)	Any two from:		2	
	Protons/nuclei/they have a property called spin/ have a magnetic moment/ have a magnetic field/ are aligned with the external magnetic field	(1)	just dipole moment	starts to spin
which flips/changes	(1) align against the external magnetic field (when radiation is absorbed)	polarity flips any reference to electrons or molecules scores zero		

$\left.\begin{array}{|l|l|l|l}\hline \begin{array}{l}\text { Question } \\ \text { Number }\end{array} & \text { Acceptable Answers } & \text { Reject } & \text { Mark } \\ \hline \mathbf{3 (c) (i i i)} & \begin{array}{l}\text { Quartet } \\ \text { ALLOW quadruplet/indication of four (peaks) (1) }\end{array} & & \mathbf{2} \\ & \begin{array}{l}\text { Value from 0.1 to } 1.9 \text { (ppm) inclusive } \\ \text { ACCEPT any range within the above range }\end{array} \quad \text { (1) }\end{array}\right) \quad$.

